Class 17
Given a continuous random variable \(X \ge 0\), we say that \(X\) is memoryless if for each \(s \ge 0\) and for each \(t \ge 0\)
\[\operatorname{P}\left(X > t + s\mid X > t\right) = \operatorname{P}\left(X > s\right)\]
If we interpret \(X\) as the time spent waiting for something to happen, this says that if we already waited \(t\) time units, the probability we will have to wait more than additional \(s\) units is the same as the probability of having to wait more than \(s\) units from the start.
Every time \(t\) is a new start.
\[\begin{align} \operatorname{P}\left(X > t + s\mid X > t\right) &= \operatorname{P}\left(X > s\right)\\[6pt] \class{fragment}{\data{fragment-index=1}{\frac{\operatorname{P}\left(X > t + s\class{fragment highlight-red}{\data{fragment-index=2}{\text{ and } X > t}}\right)}{\operatorname{P}\left(X > t\right)}}} & \class{fragment}{\data{fragment-index=1}{{} = \operatorname{P}\left(X > s\right)}}\\[6pt] \class{fragment}{\data{fragment-index=3}{\frac{\operatorname{P}\left(X > t + s\right)}{\operatorname{P}\left(X > t\right)}}} & \class{fragment}{\data{fragment-index=3}{{} = \operatorname{P}\left(X > s\right)}}\\[6pt] \class{fragment}{\data{fragment-index=4}{\operatorname{P}\left(X > t + s\right)}} & \class{fragment}{\data{fragment-index=4}{{} = \operatorname{P}\left(X > s\right)\operatorname{P}\left(X > t\right)}}\\[6pt] \class{fragment}{\data{fragment-index=5}{\color{green}\text{Define } G(x) = 1 - F(x) = \operatorname{P}(X > x).}}&\\[6pt] \class{fragment}{\data{fragment-index=6}{G\left(t + s\right)}} & \class{fragment}{\data{fragment-index=6}{{} = G\left(s\right)G\left(t\right)}}\\[6pt] \class{fragment}{\data{fragment-index=7}{G(x)}}&\class{fragment}{\data{fragment-index=7}{{} = e^{-\lambda x} \text{ for some } \lambda}}\\[6pt] \class{fragment}{\data{fragment-index=8}{F(x)}}&\class{fragment}{\data{fragment-index=8}{{} = 1 - e^{-\lambda x}}}\\[6pt] \class{fragment}{\data{fragment-index=9}{X}}&\class{fragment}{\data{fragment-index=9}{{} \sim \operatorname{Exp}(\lambda)}}\\[6pt] \end{align}\]
\(\displaystyle f(x) = \begin{cases} 0 & \text{ if } x < 0\\\lambda e^{-\lambda x} & \text{ if } x \ge 0\end{cases}\)
\(\displaystyle F(x) = \begin{cases} 0 & \text{ if } x < 0\\1 - e^{-\lambda x} & \text{ if } x \ge 0\end{cases}\)
\(\displaystyle \operatorname{P}(X > x) = G(x) = 1 - F(x) = \begin{cases} 1 & \text{ if } x < 0\\ e^{-\lambda x} & \text{ if } x \ge 0\end{cases}\)
\(\operatorname{E} X = \frac{1}{\lambda}\)
Let \(X \ge 0\) is a continuous random variable with CDF \(F\) and PDF \(f\). Define the failure rate function for \(X\) as \[r(t) = \frac{f(t)}{1 - F(t)} = \frac{f(t)}{G(t)}.\]
\(\displaystyle F(t) = 1 - \exp\left(-\int_0^t r(x)\;dx\right)\)
\(X \sim \operatorname{Exp}(\lambda) \Leftrightarrow r(t) = \lambda\)