Class 25
\(\displaystyle P_n = \lim_{t\to\infty} \operatorname{P}(X(t) = n)\)
Process with states \(n = 0, 1, \ldots\), where \(n\) is the number of customers in the system.
Balance equations:
\[ \begin{aligned} \lambda_a P_0 &= \lambda_s P_1\\ (\lambda_a + \lambda_s) P_n &= \lambda_a P_{n-1} + \lambda_s P_{n+1} \text{ for } n > 0\\ \sum_{n=0}^\infty P_n &= 1 \end{aligned} \]
\[P_n = \left(\frac{\lambda_a}{\lambda_s}\right)^n\left(1 - \frac{\lambda_a}{\lambda_s}\right) \text{ for } n = 0, 1, \ldots\]
\(\displaystyle L = \frac{\lambda_a}{\lambda_s - \lambda_a}\)
\(\displaystyle W = \frac{L}{\lambda_a} = \frac{1}{\lambda_s - \lambda_a}\)
\(\displaystyle W_S = \frac{1}{\lambda_s}\)
\(\displaystyle L_S = \frac{\lambda_a}{\lambda_s}\)
\(\displaystyle W_Q = W - W_S = \frac{\lambda_a}{\lambda_s(\lambda_s - \lambda_a)}\)
\(\displaystyle L_Q = \lambda_a W_Q = \frac{\lambda_a^2}{\lambda_s(\lambda_s - \lambda_a)}\)
Balance equations:
\[ \begin{aligned} \lambda P_{00} &= \lambda_2 P_{01}\\ \lambda_1P_{10} &= \lambda P_{00} + \lambda_2 P_{11}\\ (\lambda + \lambda_2)P_{01} &= \lambda_1 P_{10} + \lambda_2 P_{1'1}\\ (\lambda_1 + \lambda_2)P_{11} &= \lambda P_{01}\\ \lambda_2P_{1'1} &= \lambda_1 P_{11}\\ P_{00} + P_{01} + P_{10} + P_{11} + P_{1'1} &= 1 \end{aligned} \]
Balance equations:
\[ \begin{aligned} \lambda_a P_{0'} &= \lambda_s P_0\\ (\lambda_a + \lambda_s) P_0 &= \lambda_a P_{0'} + \lambda_s (P_{1} + P_2)\\ (\lambda_a + \lambda_s) P_n &= \lambda_a P_{n-1} + \lambda_s P_{n+2} \text{ for } n > 0\\ P_{o'} + \sum_{n=0}^\infty P_n &= 1 \end{aligned} \]