flowchart LR START:::hidden --> A(Server 1) --> B(Server 2) --> END:::hidden
Class 26
\(\displaystyle L = \frac{\lambda_a}{\lambda_s - \lambda_a}\)
\(\displaystyle W = \frac{L}{\lambda_a} = \frac{1}{\lambda_s - \lambda_a}\)
\(\displaystyle W_S = \frac{1}{\lambda_s}\)
\(\displaystyle L_S = \frac{\lambda_a}{\lambda_s}\)
\(\displaystyle W_Q = W - W_S = \frac{\lambda_a}{\lambda_s(\lambda_s - \lambda_a)}\)
\(\displaystyle L_Q = \lambda_a W_Q = \frac{\lambda_a^2}{\lambda_s(\lambda_s - \lambda_a)}\)
System of servers, each with its own queue, where customers moves between servers according to some rules.
Tandem system
flowchart LR START:::hidden --> A(Server 1) --> B(Server 2) --> END:::hidden
What is the probability there are \(n\) customers at server 1 and \(m\) customers at server 2?
\(\displaystyle P_{n,m} = \left(\frac{\lambda_a}{\lambda_1}\right)^n\left(1 - \frac{\lambda_a}{\lambda_1}\right) \left(\frac{\lambda_a}{\lambda_2}\right)^m\left(1 - \frac{\lambda_a}{\lambda_2}\right)\)
Example: 5 servers, arrival rates 5, 2, 2, 0, 0, service rates 4, 3, 2, 1, 1, the \(P_{ij}\) matrix given by
\[ \small \mathbf{P} = \begin{bmatrix} 0 & .6 & .4 & 0 & 0\\ 0 & 0 & .2 & .3 & .5\\ 0 & .1 & 0 & .3 & .4\\ 0 & 0 & 0 & 0 & .3\\ 0 & 0 & 0 & .7 & 0 \end{bmatrix} \]